
6 Online Appendix B: Extensions of the Baseline

Model

In this appendix, we show that adding decreasing or increasing returns to scale to

our model does not change the underlying source of firm inefficiency, that decreasing

returns to scale make inefficiency in the firm equilibrium more likely, that there is no

inefficiency when the parameters of inventive opportunities tomorrow do not depend

on which inventions are discovered today, that a single element of state dependence

in conjunction with multiple research lines generates inefficiency, and that permitting

both short-lived and infinite-lived research firms exacerbates the racing distortion.

6.1 Planner Problem with Nonlinear Hazard Rates

First, consider alternative assumptions about returns to scale. Let the hazard rate on

invention k for firm i be λkh(xk), where h is twice-differentiable, h′ > 0, h(0) = 0 and,

without loss of generality, h( 1
N

) = 1
N

. Under decreasing returns to scale, h′′ < 0, and

under increasing returns, h′′ > 0. Note that, in the results presented in the body of

this paper, constant returns to scale under the above assumptions simply means that

h(x) = x. To simplify notation, throughout this section we assume that there is no

inefficiency in future states.

In section 5.2.1 in Appendix A, we showed that independence of hazard rates across

firms means the planner optimizes with symmetric effort across firms. Without loss of

generality, we assume M = 1, so the planner solves

max∑
s′∈S(s)

xs′≤
1
N
, xs′≥0,∀s′∈S(s)

∑
s′ λs′Ps′Nh(xs′)

r +
∑

s′ λs′Nh(xs′)

The KKT necessary condition imply that exist µs′ ≥ 0 such that µs′xs′ = 0 and γ such

that
∂f(x)

∂xs′
= γ − µs′ .

A corner solution, where all effort goes to k ∈ S(s), that is xk = 1
N

and x` = 0 for ` 6= k
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is characterized by

λkPkh
′(xk)(rN +

∑
s′ λs′h(xs′))− λkh′(xk)(

∑
s′ λs′Ps′h(xs′))

(rN +
∑

s′ λs′h(xs′))2
≥

λ`P`h
′(x`)(rN +

∑
s′ λs′h(xs′))− λ`h′(x`)(

∑
s′ λs′Ps′h(xs′))

(rN +
∑

s′ λs′h(xs′))2

where rN = r
N

. Using that h(0) = 0, this simplifies to

λkPkh
′(xk)(rN + λkh(xk))− λkh′(xk)λkPkh(xk) ≥

λ`P`h
′(0)(rN + λkh(xk))− λ`h′(0)λkPkh(xk)

Let C =
h′( 1

N
)

h′(0)
. Note that under decreasing returns to scale, C ∈ (0, 1). Thus, we can

write

λkPkC(rN + λkh(xk))− λkCλkPkh(xk) ≥ λ`P`(rN + λkh(xk))− λ`λkPkh(xk)

Using that h(xk) = 1
N

and rearranging terms, and defining ∆C(k, `) =
λ` − Cλk
r + λk

, we

get

λkPkC ≥ λ`P` −∆C(k, `)λkPk.

Notice that this condition is equivalent to the planner’s condition in Proposition 2.

Similar derivation for an arbitrary number of scientists M , defining C(M) =
h′(M

N
)

h′(0)
,

gives the same result.

The only caveat is that KKT are only necessary and not sufficient conditions. However,

we show that when h(x) = x the only solution is the corner solution xk and in that

case the condition above holds (C = 1). Thus, if inequality holds strictly for C = 1, it

still holds for C close to 1, in which case we have full effort toward a single invention

even with nonconstant returns to scale. Thus, even with small levels of decreasing or

increasing returns to scale, the planner corner solution is retained.

6.2 Firm Problem with Nonlinear Hazard Rates

Under the assumption that parameters are such that the planner works on a single

invention under decreasing returns to scale, we now show that the firms deviate for

almost exactly the same reason as under constant returns. Indeed, decreasing returns
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to scale make it more likely that firms will deviate because minor deviations to new

research lines will generate a higher relative hazard rate under decreasing returns than

under constant returns, hence exacerbate the racing distortion.

Suppose that all rivals are exerting efforts towards invention k. Recall the firm problem,

if all other firms exert full effort towards invention k, is

max∑
s′∈S(s) xs′≤

1
N
,xs′≥0,∀s′∈S

∑
s′ λs′Pfs′h(xs′) + Ak
r̃ +

∑
s′ λs′h(xs′)

where Ak = (N − 1)λkh( 1
N

)Vfk, and r̃ = r + (N − 1)λkh( 1
N

)

As in Section 6.1, the first order necessary condition for positive effort on invention k

and no effort on any other invention is

λkPfkh
′(xk)(r̃ + λkh(xk))− λkh′(xk)(λkPfkh(xk) + Ak)

(r̃ + λkh(xk))2
≥

λ`Pf`h
′(x`)(r̃ + λkh(xk))− λ`h′(x`)(λkPfkh(xk) + Ak)

(r̃ + λkh(xk))2

This simplifies to

λkPfkh
′(xk)(r̃ + λkh(xk))− λkh′(xk)(λkPfkh(xk) + Ak) ≥

λ`Pf`h
′(x`)(r̃ + λkh(xk))− λ`h′(x`)(λkPfkh(xk) + Ak)

Retaining the assumptions that h( 1
N

) = 1
N

and C =
h′( 1

N
)

h′(0)
, after simple algebra we get

λkPfkC ≥ λ`Pf` +
1

N
∆C(k, `)λkPfk −

1

N
∆C(k, `)(N − 1)λkVfk

Adding and subtracting terms, we get

λkPkC ≥ λ`P` −∆C(k, `)λkPk +D∗

where

D∗ = λ`(Pf`−P`)−λkC(Pfk−Pk)+
1

N
∆C(k, `)λk(Pk−(Pfk+(N−1)Vfk))+

N − 1

N
∆C(k, `)λkPk

This distortion are analogous to the distortions in Proposition 2, with

DC
1 (k, `) = λ`(Pf` − P`)− λkC(Pfk − Pk)

DC
2 (k, `) =

N − 1

N
∆C(k, `)λkPk

DC
3 (k, `) =

1

N
∆C(k, `)λk(Pk − (Pfk + (N − 1)Vfk))
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Thus, adding small amounts of increasing or decreasing returns to scale does not change

our main qualitative results.

6.3 Graphs Without State Dependence Have an Efficient Equi-

librium

The decomposition in Proposition 2 allows a simple categorization of the nature of

inefficiency generated by a particular policy in a particular type of invention graph.

Inefficiency in the baseline case does not result from the simple existence of multiple

projects. Rather, in order to generate inefficiency in the baseline case, a necessary

though not sufficient condition is that one firm’s actions today must affect the existence

of future research targets, or their value, or the difficulty of inventing them. This can

be seen with the following simple cases.

First, let there be a set of research targets which are technologically independent.

Definition 8. An invention graph involves technologically independent inventions if,

in every state, the set of research targets S(s) includes every invention in S(s0) which

has yet to be invented, and the payoff π and simplicity λ of each undiscovered invention

never change.

With technological independence, no matter what is invented today, the options avail-

able to inventors tomorrow, and the simplicity and payoff of those inventions, does not

change; there is nothing resembling a set of research lines, where invention today affects

the nature of inventive opportunity tomorrow. As a result, Proposition 7 shows that

on the technologically independent graph, the baseline firm equilibrium is efficient.

Proposition 7. In an invention graph with technologically independent inventions, the

planner optimally works on inventions in decreasing order of their immediate flow social

payoff λs′πs′. Further, there exists an efficient firm equilibrium under the baseline policy.

Proof. We prove by induction. Let there be two remaining inventions. If invention i is

discovered first, the expected discounted continuation value for the planner is Vp(i) =
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λ−i
r+λ−i

π−i. By Proposition 1, the planner works on invention i that node maximizes the

index
λi

r +Mλi
[πi + Vi]

Define pi = λi
r+Mλi

. The planner discovers 1 first and 2 second if and only if(
p1

1− p1

)
π1 ≥

(
p2

1− p2

)
π2.

Using the definition of pi, that inequality simplifies to

λ1π1 ≥ λ2π2.

Now we prove the inductive step. Without loss of generality let λ1π1 ≥ λ2π2 ≥ ... ≥
λKπK . Define pi = λi

r+λi
and notice that pi

1−pi = λi
r

.

We know the result holds for K = 2. Assume the result is true for any set of K − 1

inventions (Induction Hypothesis). Let’s prove the result for K inventions. We need to

show that starting from 1 is better than starting from any other invention k. By the

characterization result, we start from 1 instead of k iff:

p1(π1 + Vp(1)) ≥ pk(πk + Vp(k)), for all k.

Since after one invention there are K − 1 left, using the induction hypothesis we know

that the planner discovers in decreasing order of λπ. Hence,

Vp(1) =
K∑
m=2

(
m∏
j=2

pj

)
πm and Vp(k) =

k−1∑
m=1

(
m∏
j=1

pj

)
πm +

K∑
m=k+1

(
m∏

j=1, j 6=k

pj

)
πm.

Thus, the condition is equivalent to

K∑
m=1

(
m∏
j=1

pj

)
πm ≥ pkπk + pk

k−1∑
m=1

(
m∏
j=1

pj

)
πm +

K∑
m=k+1

(
m∏
j=1

pj

)
πm, for all k.

Notice that the terms from k+ 1 to K cancel out. This is because the expected time at

which we reach invention k + 1 is the same if we start from 1 or from k. Thus, we get

k∑
m=1

(
m∏
j=1

pj

)
πm ≥ pkπk + pk

k−1∑
m=1

(
m∏
j=1

pj

)
πm.
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which is equivalent to

k−1∑
m=1

(
m∏
j=1

pj

)
πm(1− pk) ≥ pkπk

(
1−

(
k−1∏
j=1

pj

))
.

Thus, the planner start from invention 1 if and only if

k−1∑
m=1

λmπm

(∏m−1
j=1 pj

)
(1− pm)(

1−
(∏k−1

j=1 pj

)) ≥ λkπk, for all k.

This always holds when the inventions are ordered by λπ, since the left hand side of

the inequality is a convex combination of {λmπm}k−1
m=1, since the coefficients

am =

(∏m−1
j=1 pj

)
(1− pm)(

1−
(∏k−1

j=1 pj

))
satisfy that am ≥ 0 and

∑k−1
m=1 am = 1. The firm equilibrium then follows immediately:

since the future is by induction efficient, by Proposition 2 the firms never deviate when

the planner is working on the project with highest flow immediate payoff.

6.4 State Dependent Invention Graphs Generate Inefficiency

Adding an element of state dependence, where invention today affects what can be

worked on tomorrow, to the mere existence of multiple projects is enough to induce

inefficiency under the baseline policy. Consider a case where all inventions are available

in the initial state, but there is no continuation value: once anything has been invented,

the immediate social payoff of every other potential invention falls to zero.

Definition 9. An invention graph involves perfect substitutes if all inventions are

available in s0 and any discovery reduces the immediate social payoff of all other inven-

tions to π = 0.22

22Our model takes the immediate social payoff of an invention as the reduced form value from an

unmodeled demand system. As such, we are in a sense abusing the term “perfect substitutes,” but the

manner in which the term is used here—two inventions are perfect substitutes if the marginal value of

each is zero once the other has been invented—should nonetheless be clear.
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With the social continuation value equal to zero, and inventing firms paid exactly the

immediate social payoff of their invention, the baseline policy on the perfect substitutes

invention graph generates distortions D1(s′, `) = D3(s′, `) = 0, leaving only the racing

distortion D3. Therefore, under perfect substitutes, firms only deviate toward projects

which are easier than the planner optimum.

Proposition 8. Under the baseline policy PBC on the perfect substitutes invention

graph, s′ is planner optimal if ∀` ∈ S(s)

λs′πs′ ≥ λ`π` − λs′πs′∆(s′, `),

and s′ is a firm equilibrium under the baseline policy if and only if

λs′πs′ ≥ λ`π` − λs′πs′∆(s′, `) +

(
N − 1

N

)
λs′πs′∆(s′, `)︸ ︷︷ ︸

D2(s′,`)

.

The proof of Proposition 8 is straightforward algebra, hence is omitted.

The technologically independent inventions example shows that equilibrium direction

choice is efficient, when all inventions are available from the beginning and there is

not state dependency. The perfect substitutes example shows that simple forms of

state contingency can generate inefficiency in the equilibrium direction. This case is a

particular form of state dependency in parameter values, changing the immediate payoff

π. We now show that another type of state contingency, availability of inventions only

after other inventions, can also generate directional inefficiencies under the baseline

policy.

Consider three inventions. Inventions 1 and 2 are available from the beginning. How-

ever, invention 3 becomes available only after 1 is invented. Figure 4a shows the inven-

tions and Figure 4b the states representation.

Proposition 9. Consider the invention graph in Figure 4. Then:

1. If λ3π3 ≤ max{λ1π1, λ2π2}, then the planner always works on the available inven-

tion with largest flow payoff λπ. By Proposition 2 this can be implemented as a

firm equilibrium.
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∅

1

3

2

(a) Possible Inventions

s0

{1} {2}

{1, 3} {1, 2}

{1, 2, 3}

(b) Graph of states.

Figure 4: Invention 3 is only available once 1 is invented.

2. If λ3π3 > max{λ1π1, λ2π2}, then the planner opens a path (works on invention 1

first) iff

λ1π1 ≥ λ2π2 +

(
λ1

r + λ3

)
[λ2π2 − λ3π3].

Applying the firm equilibrium condition, the planner solution can be implemented

as an equilibrium iff

λ1π1 ≥ λ2π2 +
r

r + (N − 1)(r + λ1)

(
λ1

r + λ3

)
[λ2π2 − λ3π3].

Proposition 9 says that the planner may work on invention 1 even when λ1π1 < λ2π2

as long as doing so makes available a third invention with even higher expected flow

payoff and the future is not discounted too heavily. We prove this by examining all six

permutations of flow immediate payoff across the inventions.

Proof. In the cases:

λ1π1 ≥ λ2π2 ≥ λ3π3, λ1π1 ≥ λ3π3 ≥ λ2π2, λ2π2 ≥ λ1π1 ≥ λ3π3,

the solution (for both planner and firms) is to discover in decreasing order of λiπi, since

the graph does not impose any binding constraints. This can be shown directly with

Proposition 2.

Consider the following cases:
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• Case (a): λ3π3 ≥ λ1π1 ≥ λ2π2.

• Case (b): λ3π3 ≥ λ2π2 ≥ λ1π1.

• Case (c): λ2π2 ≥ λ3π3 ≥ λ1π1.

In these cases, the planner optimum may involve working on 1 first in order to “open

up” valuable invention 3. In case c, by Proposition 4, we know the planner works on 2

before 3 conditional on inventing 1. The planner would invent 1 before 2 if and only if

p1π1 + p1p2π2 + p1p2p3π3 ≥ p2π2 + p1p2π1 + p1p2p3π3,

Algebraic manipulation shows this condition is equivalent to λ1π1 ≥ λ2π2. Therefore,

the planner will always work on the project with the highest available flow profit and

therefore we can implement the planner solution as a equilibrium under the baseline

policy.

Consider now cases (a) and (b). By Proposition 4, we know the planner will work on

3→ 2 after discovering 1. Therefore, the planner will first invent 1 if and only if

p1π1 + p1p3π3 + p1p2p3π2 ≥ p2π2 + p1p2π1 + p1p2p3π3,

Moving terms around and multiplying the expression by r
(1−p1)(1−p2)

= (r+λ1)(r+λ2)
r

we

get

λ1π1 ≥ λ2π2 +

(
λ1

r + λ3

)
[λ2π2 − λ3π3]

Now, using the result about equilibrium implementation of the planner solution we get

the statement in the proposition.

6.5 Spillovers

In the main results, under the baseline policy, inventing firms collect the entire imme-

diate social payoff of their invention, and non-inventing firms collect zero. Consider a

policy where only a fraction α of the immediate social payoff is collected by inventors,

with the remaining surplus accruing to all other firms, shared equally.
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Definition 10. Let a spillover policy Pα provide inventors transfers w(s, s′) = π(s, s′)(1−
(N−1)α) and noninventors z(s, s′) = απ(s, s′), Assume that α ≤ 1

N
, meaning inventors

receiveweakly more than non-inventors.

From proposition 2, it is easy to see that the distortions can be written as

Dα(s, s′) = DBC(s, s′)− (N − 1)α(λ`π` − λs′πs′) + V(α) = (1− α)DBC(s, s′) + V(α)

where V(α) is the distortion from the difference between the social continuation value

under the baseline policy and spillover policy Pα. Thus, letting non-inventors get a

share of the immediate payoff weakens the directional distortion caused by the baseline

policy.

6.6 Short Run vs Long Run Firm Equilibrium

In the main results, we look only at homogenous, infinitely-lived firms with perfect

information about parameter values. Much of the intuition in those results can be

generalized. In this subsection, let there be one long run innovator who plays until

everything is discovered, and a sequence of short run innovators who play only one

period each. Short run players may be R&D firms who only have the technological

ability to work on exactly the present set of invention opportunities; they hence put no

weight on the social value created when their inventions open up future opportunities

for other firms.

Consider an invention graph with two technologically independent inventions. Let the

total number of scientists M = 1, with the long run and the short run firm both

having 1
2

scientist. Since the number of scientists is constant, just as in the case of

technologically independent inventions the planner works first on 1 rather than 2 if and

only if λ1π1 ≥ λ2π2.

The long run firm has the same best response as in the technologically independent

inventions case since the identity of the rivals is irrelevant. The short run innovator at

any stage has the best response:

s′ ∈ arg max
s̃∈S(s)

λs̃πs̃
N(r +

∑
z∈S(s) a−izλz) + λs̃
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The continuation values for the long run player are

V (1) =
λ2π2

2r + 2λ2

and

V (2) =
λ1π1

2r + 2λ1

Suppose the long run firm initially works on invention 1. The short run firm, when

both inventions are available, works on invention 1 if and only if:

λ1π1 ≥ λ2π2 +
λ2π2(λ1 − λ2)

2r + λ1 + λ2

⇔ λ1π1

λ2π2

≥ 1 + ∆1.

Suppose the long run innovator initially works on 2. The short run innovator when

both inventions are available works on 1 if and only if:

λ1π1 ≥ λ2π2 +
λ2π2(λ1 − λ2)

2r + 2λ2

⇔ λ1π1

λ2π2

≥ 1 + ∆2,

where ∆2 > ∆1 as long as λ1 6= λ2.

Therefore, when λ1 = λ2, there is no inefficiency. When λ1 < λ2,

• If λ1π1
λ2π2
≥ 1: Both long and short run firms working on 1 is an equilibrium (and it

is efficient).

• If λ1π1
λ2π2
≤ 1 + ∆1: Both working on 2 is an equilibrium (and it is efficient)

• When 1 + ∆1 ≤ λ1π1
λ2π2
≤ 1, the short run and long run firm working on 1 is not an

equilibrium. In this case, the equilibrium is asymmetric, hence inefficient.

Analogous conditions hold if λ1 > λ2.

The equilibrium is depicted in the following figure, where ∆2 is negative and ∆1 is

positive.

It may seem counterintuitive that short run players deviate to the harder project. The

short run player puts no value on being able to work on a second project after the first

invention is completed. When the long run player works on the easy project first, a

deviation by a short run player to the hard project delays the total expected time until
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Figure 5: Equilibrium project choice with sequence of short run firms and a long run

firm

Short Run:

Long Run:

Case (1) : λ1 < λ2

1 + ∆2

2

2

1

1

2

λ1π1

λ2π2

1

1

1

2

2

1 + ∆1

2

1

Case (2) : λ1 > λ2

1

1

λ1π1

λ2π2

both projects are completed. Since the short run player receives no continuation value,

he completely ignores the harm of delaying the completion of both projects. Note how

extreme this effect is: short run firms can work on a project in equilibrium even when

it has a strictly lower flow immediate payoff than the social optimum.
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